

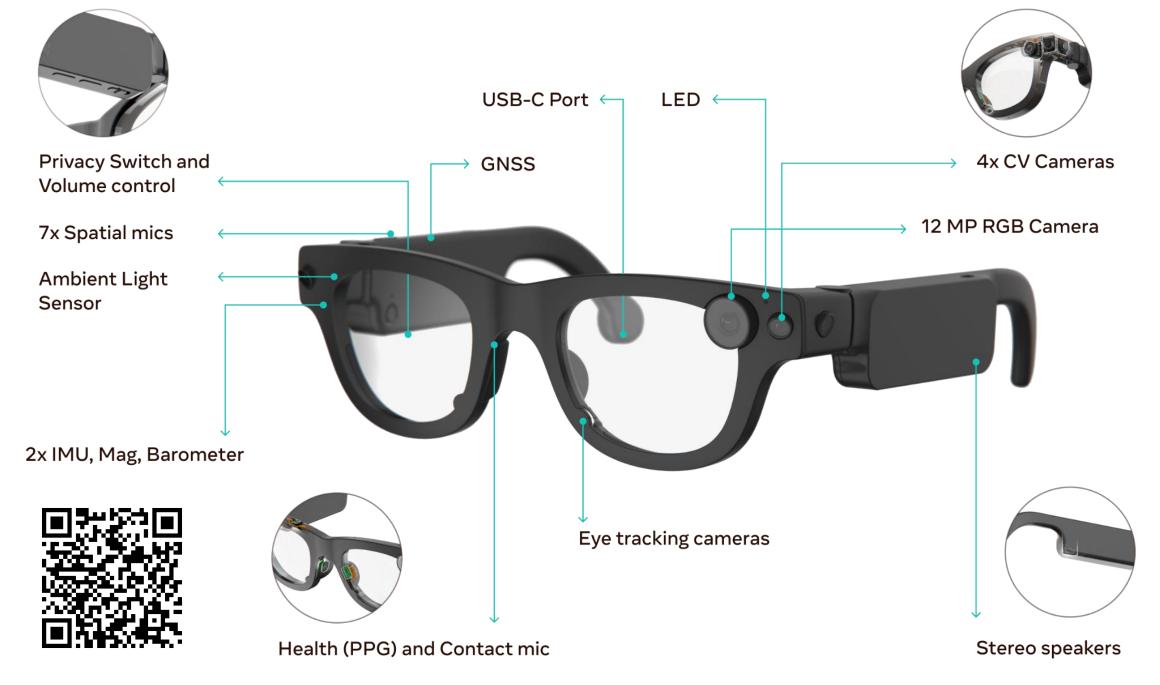
JULIAN STRAUB

ICCV 2025 – 5th Workshop on Open-World 3D Scene Understanding with Foundation Models

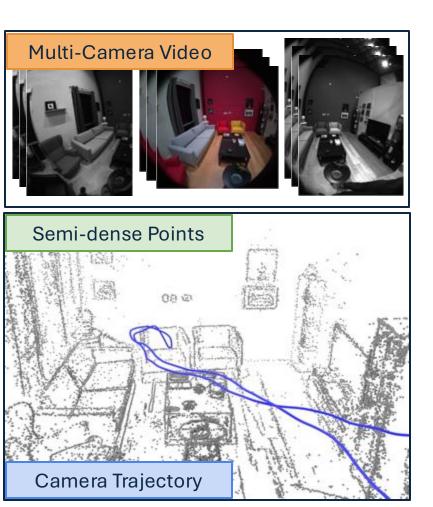
Introducing the first AI glasses with a private in-lens display and on-wrist control

Project Aria Gen 2

www.projectaria.com

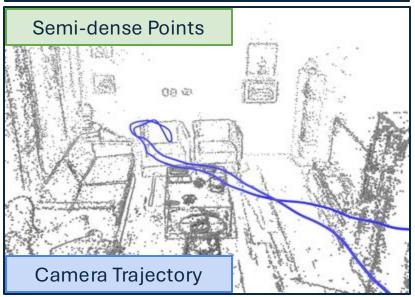


Egocentric Data is a New Category of Data



Project Aria Gen 2 Device

Egocentric Data is a New Category of Data

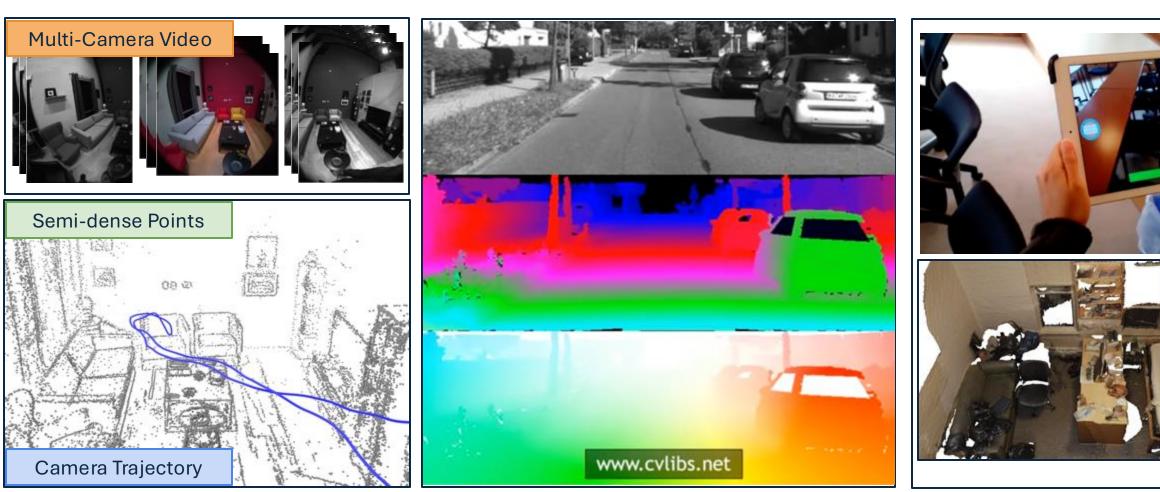


Key Properties of Egocentric data:

- Always-On Casual Capture
- Head-worn Natural Human Motion
- Partial Observations
- No Active Depth Camera
- Dynamic, Cluttered Scenes

Egocentric Data

Egocentric Data is a New Category of Data

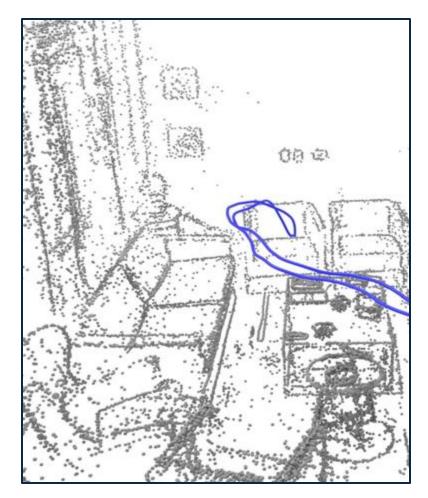


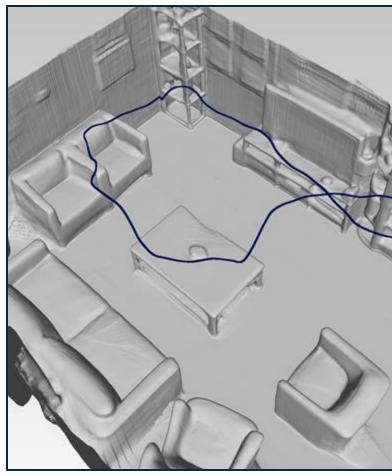
Egocentric Data

Car-centric Data (Autonomous Car Data)

Room-centric Data (Indoor Scanning Data)

3D & 4D Scene Information from Egocentric Devices





Semi-dense

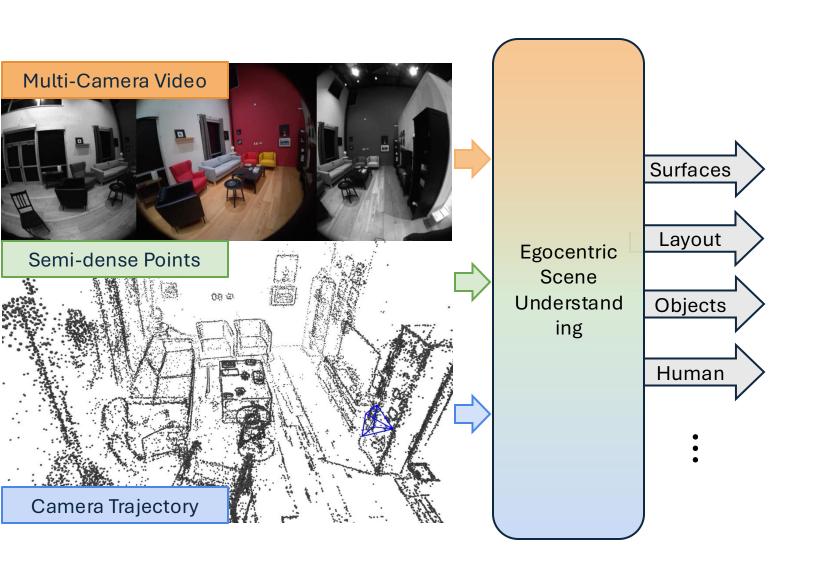
Engel, Jakob, et al. "Direct sparse odometry." TPAMI

Dense

Straub, Julian, et al. "EFM3D: A Benchmark for Measuring Progress Towards 3D Egocentric Foundation Models", arXiv:2406.10224

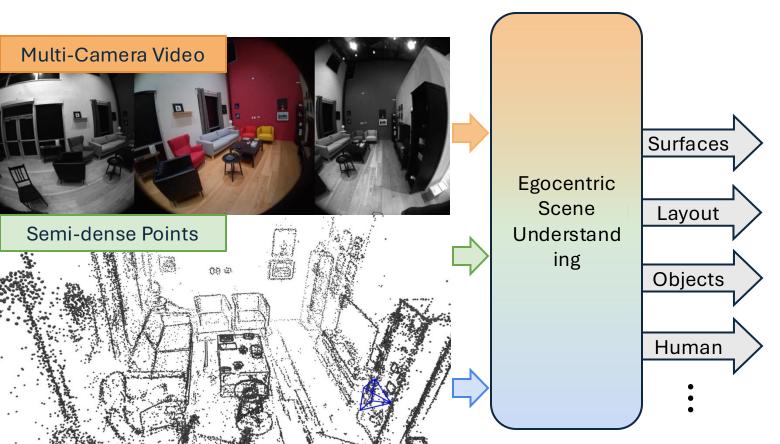
Dynamic

Wen, Bowen, et al. "FoundationStereo: Zero-shot stereo matching." CVPR 2025.



Desired Properties

- Strong Learned Priors
- Scalable Incremental Inference
- Persistent Representation
- Coverage: Explain
 Observations Fully
- Predictivity



Camera Trajectory

Desired Properties

- Strong Learned Priors
- Scalable Incremental Inference
- Persistent Representation
- Coverage: Explain
 Observations Fully
- Predictivity

Sonata: Self-Supervised Learning of Reliable Point Representations, CVPR 2025 EgoLM: Multi-Modal Language Model of Egocentric Motions, CVPR 2025

HMD²: Environment-aware Motion Generation from Single Egocentric Head-Mounted Device, 3DV 2025 SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model, ECCV 2024 EFM3D: A Benchmark for Measuring Progress Towards 3D Egocentric Foundation Models, arXiv:2406.10224

- Closed taxonomy 3D object detection (EFM3D, Arxiv 2024).
- Lifting 2D open-world foundation models to 3D.
 - 2D Segmentation "Point Painting" on Sparse Point Cloud.
 - 2D Segmentation lifting via Gaussian Splats (EgoLifter, ECCV 2024).
 - 2D to 3D Bounding Box Lifting. (Sneak Peak).
- Self-supervised 3D foundation models (Sonata CVPR 2025).

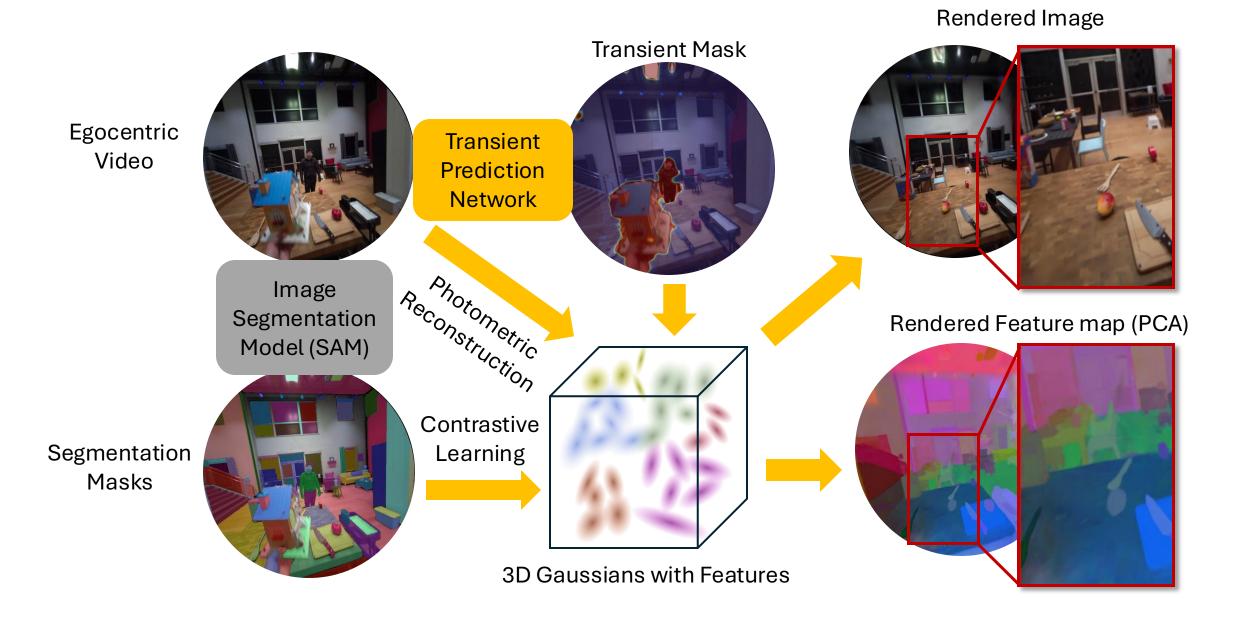
- Closed taxonomy 3D object detection (EFM3D, Arxiv 2024).
- Lifting 2D open-world foundation models to 3D.
 - 2D Segmentation "Point Painting" on Sparse Point Cloud.
 - 2D Segmentation lifting via Gaussian Splats (EgoLifter, ECCV 2024).
 - 2D to 3D Bounding Box Lifting. (Sneak Peak).
- Self-supervised 3D foundation models (Sonata CVPR 2025).

Egocentric Closed-Set 3D Object Detection is working decently

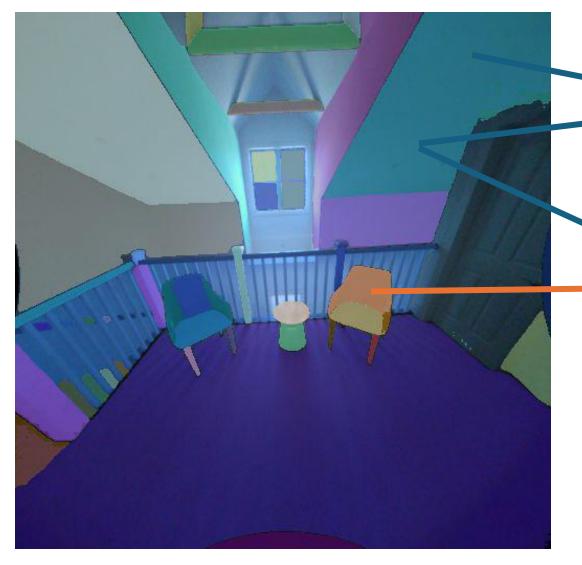
- Closed taxonomy 3D object detection (EFM3D, Arxiv 2024).
- Lifting 2D open-world foundation models to 3D.
 - 2D Segmentation "Point Painting" on Sparse Point Cloud.
 - 2D Segmentation lifting via Gaussian Splats (EgoLifter, ECCV 2024).
 - 2D to 3D Bounding Box Lifting. (Sneak Peak).
- Self-supervised 3D foundation models (Sonata CVPR 2025).

- Closed taxonomy 3D object detection (EFM3D, Arxiv 2024).
- Lifting 2D open-world foundation models to 3D.
 - 2D Segmentation "Point Painting" on Sparse Point Cloud.
 - 2D Segmentation lifting via Gaussian Splats (EgoLifter, ECCV 2024).
 - 2D to 3D Bounding Box Lifting. (Sneak Peak).
- Self-supervised 3D foundation models (Sonata CVPR 2025).

EgoLifter (ECCV 2024)



EgoLifter (ECCV 2024)



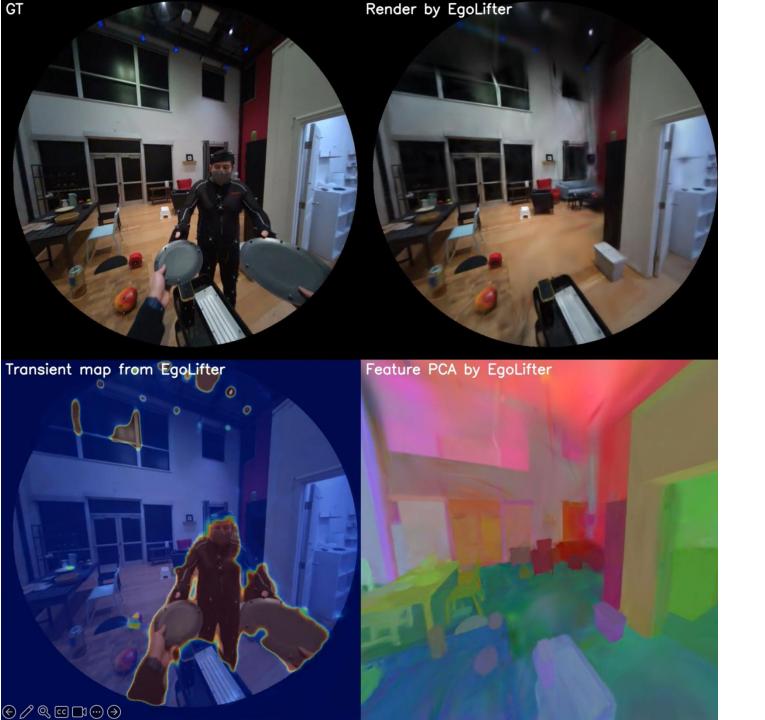
Masks from Segment-Anything (SAM)

Positive Pair

Contrastive learning on rendered features at these pixels from 3D GS.

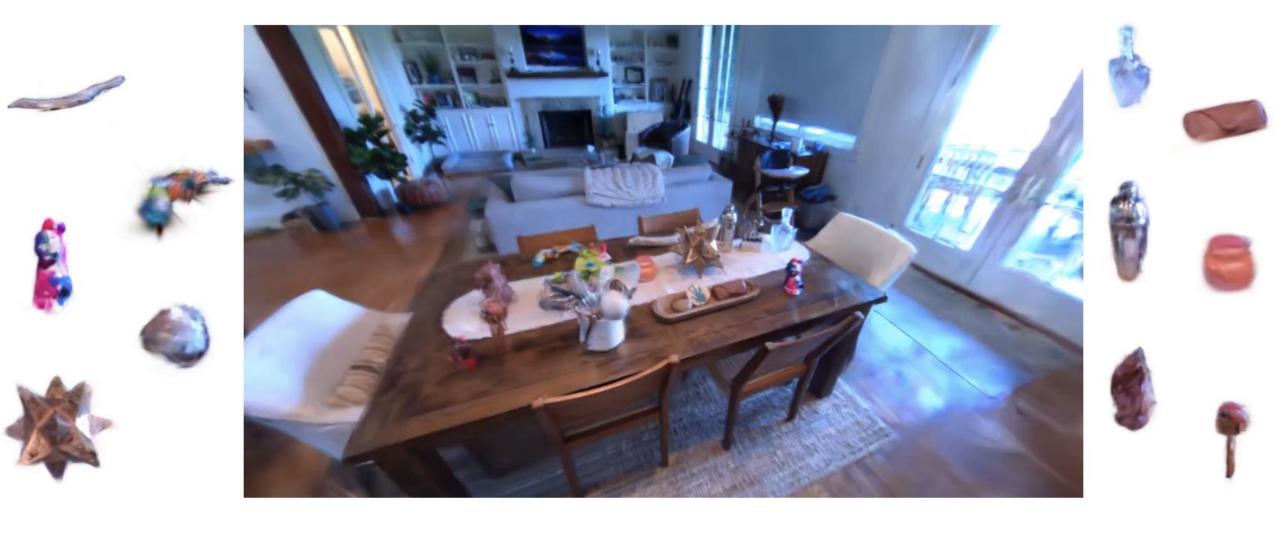
Negative Pair

Lift SAM to 3D by implicitly solving multi-view association problem of 2D segmentation masks.



EgoLifter reconstructs a clean 3D feature field anchored to GS in the presence of typical egocentric dynamics in the scene.

Clustering Features into Open-World Objects



- Closed taxonomy 3D object detection (EFM3D, Arxiv 2024).
- Lifting 2D open-world foundation models to 3D.
 - 2D Segmentation "Point Painting" on Sparse Point Cloud.
 - 2D Segmentation lifting via Gaussian Splats (EgoLifter, ECCV 2024).
 - 2D to 3D Bounding Box Lifting. (Sneak Peak).
- Self-supervised 3D foundation models (Sonata CVPR 2025).

Sneak Peak: 2D to 3D Bounding Box Lifting Model

- Closed taxonomy 3D object detection (EFM3D, Arxiv 2024).
- Lifting 2D open-world foundation models to 3D.
 - 2D Segmentation "Point Painting" on Sparse Point Cloud.
 - 2D Segmentation lifting via Gaussian Splats (EgoLifter, ECCV 2024).
 - 2D to 3D Bounding Box Lifting. (Sneak Peak).
- Self-supervised 3D foundation models (Sonata CVPR 2025).

Why not simply run 2D backbones and lift them to 3D?

... × N

It requires **significant inference time** to process a scene video with thousands of frames.

It **lacks geometric awareness**, as it is not natively encoded in 3D space.

Linear-probed Self-Supervised 2D Backbones ~= Supervised ones.

		ImageNet			
Method	ViT	Val	V2	ReaL	
Supervised backbones					
Zhai et al. (2022a)*	G/14	89.0	81.3	90.6	
Chen et al. (2023)*	e/14	89.3	82.5	90.7	
Dehghani et al. (2023)*	$22\mathrm{B}/14$	89.5	83.2	90.9	
Weakly-supervised backbone	es				
PEcore	G/14	89.3	81.6	90.4	
SigLIP 2	g/16	89.1	81.6	90.5	
AIMv2	3B/14	87.9	79.5	89.7	
EVA-CLIP	18B/14	87.9	79.3	89.5	
Self-supervised backbones					
Web-DINO	7B/14	85.9	77.1	88.6	
Franca	g/14	84.8	75.3	89.2	
DINOv2	g/14	87.3	79.5	89.9	
DINOv3	7B/16	88.4	81.4	90.4	

< 2% points difference between supervised and unsupervised 2D backbones

In 3D there is a 50-60% point gap!

]	${\bf ImageNet}$			
Method	ViT	Val	V2	ReaL		
Supervised backbones						
Zhai et al. (2022a)*	G/14	89.0	81.3	90.6		
Chen et al. (2023)*	e/14	89.3	82.5	90.7		
Dehghani et al. (2023)*	22B/14	89.5	83.2	90.9		
Weakly-supervised backbone	28					
PEcore	G/14	89.3	81.6	90.4		
SigLIP 2	g/16	89.1	81.6	90.5		
AIMv2	3B/14	87.9	79.5	89.7		
EVA-CLIP	18B/14	87.9	79.3	89.5		
Self-supervised backbones						
Web-DINO	7B/14	85.9	77.1	88.6		
Franca	g/14	84.8	75.3	89.2		
DINOv2	g/14	87.3	79.5	89.9		
DINOv3	7B/16	88.4	81.4	90.4		

Param. Effciency	Params		ScanNet Val [23]			
Methods	Learn.	Pct.	mIoU	mAcc	allAcc	
o SparseUNet [17]	39.2M	100%	72.3	80.2	90.0	
• PC [93] (lin.)	<0.2M	<0.1%	5.6	9.7	50.0	
• CSC [38] (lin.)	<0.2M	<0.1%	12.6	18.1	64.2	
• MSC [88] (lin.)	<0.2M	<0.1%	14.1	20.3	62.9	
o PTv3 [89]	124.8M	100%	77.6	85.0	92.0	
• MSC [88] (lin.)	<0.2M	<0.2%	21.8	32.2	65.5	

< 2% points difference between supervised and unsupervised 2D backbones.

50-60% points difference between supervised and unsupervised 3D backbones.

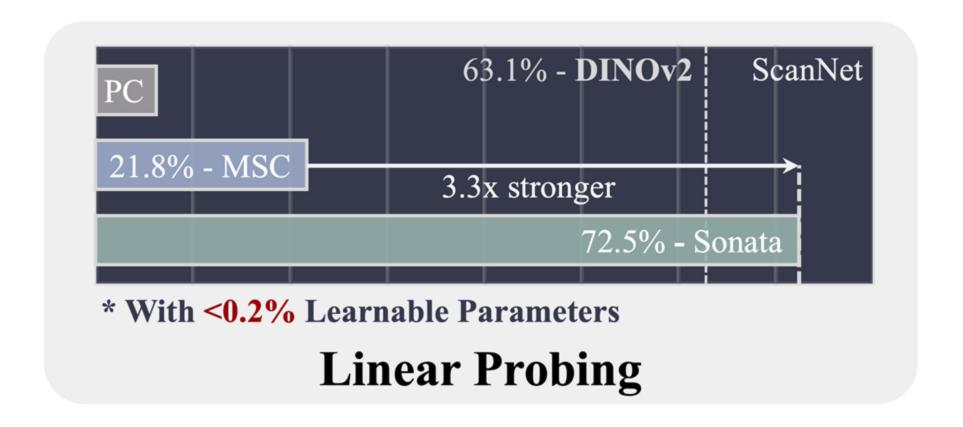
Sonata pretraining improves linear probing by 3.3x down to a gap of only 5%.

		${\bf ImageNet}$				
Method	ViT	Val	V2	ReaL		
Supervised backbones						
Zhai et al. (2022a)*	G/14	89.0	81.3	90.6		
Chen et al. (2023)*	e/14	89.3	82.5	90.7		
Dehghani et al. (2023)*	22B/14	89.5	83.2	90.9		
Weakly-supervised backbones						
PEcore	G/14	89.3	81.6	90.4		
SigLIP 2	g/16	89.1	81.6	90.5		
AIMv2	3B/14	87.9	79.5	89.7		
EVA-CLIP	18B/14	87.9	79.3	89.5		
Self-supervised backbones						
Web-DINO	7B/14	85.9	77.1	88.6		
Franca	g/14	84.8	75.3	89.2		
DINOv2	g/14	87.3	79.5	89.9		
DINOv3	7B/16	88.4	81.4	90.4		

Param. Effciency	Params		ScanNet Val [23]			
Methods	Learn.	Pct.	mIoU	mAcc	allAcc	
o SparseUNet [17]	39.2M	100%	72.3	80.2	90.0	
• PC [93] (lin.)	<0.2M	<0.1%	5.6	9.7	50.0	
• CSC [38] (lin.)	<0.2M	<0.1%	12.6	18.1	64.2	
• MSC [88] (lin.)	<0.2M	<0.1%	14.1	20.3	62.9	
o PTv3 [89]	124.8M	100%	77.6	85.0	92.0	
• MSC [88] (lin.)	<0.2M	<0.2%	21.8	32.2	65.5	
Sonata (lin.)	<0.2M	<0.2%	72.5	83.1	89.7	
• Sonata (dec.)	16.3M	13%	79.1	86.6	92.7	

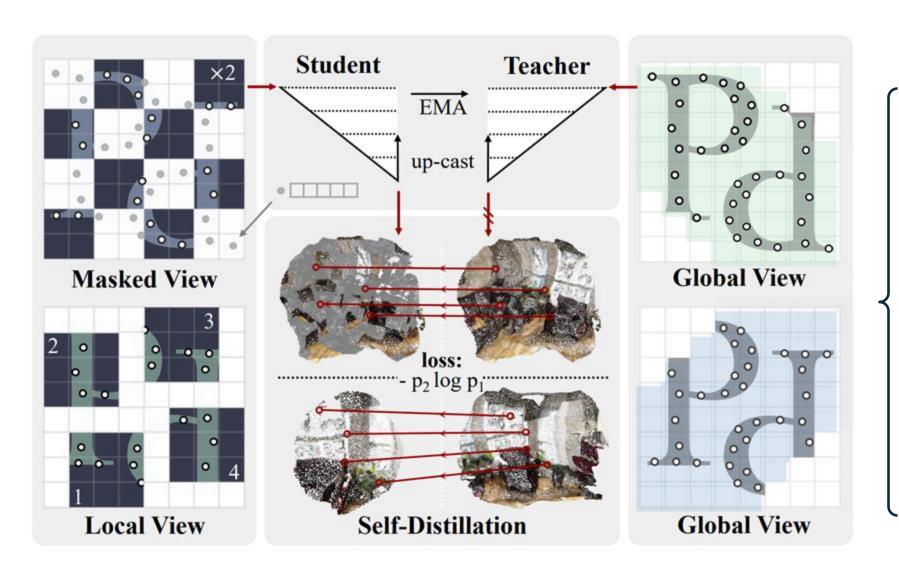
Sonata improves to ~5% points difference between supervised and unsupervised training.

< 2% points difference between supervised and unsupervised 2D backbones.



How did we do it?

Sonata Pretraining largely follows 2D Image Self-Supervised Learning



Local-Global Alignment

Mask-Unmask Alignment

Exponential Moving Average

Online Clustering

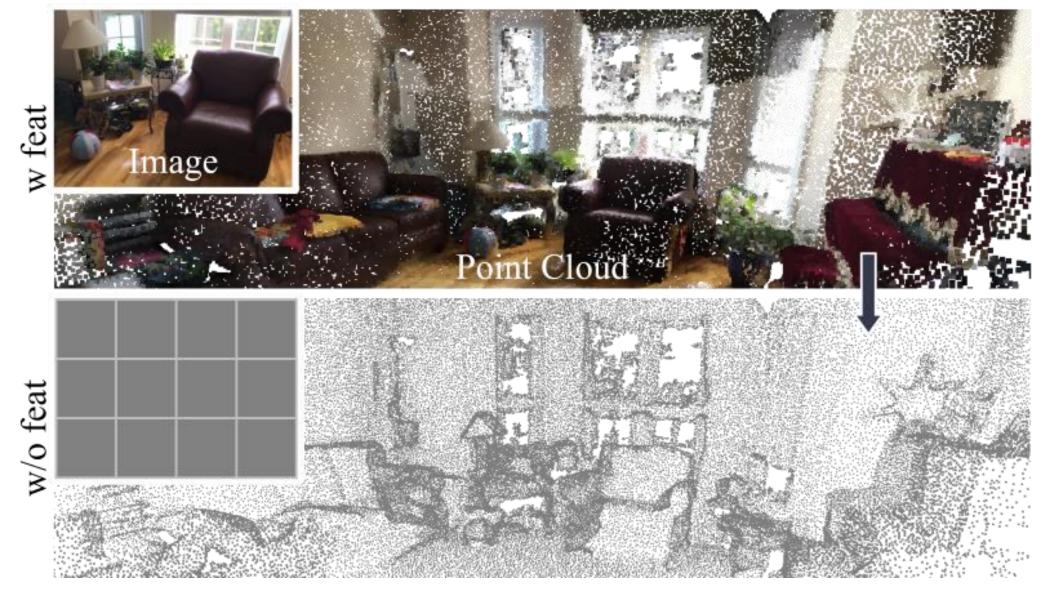
Sinkhorn-Knopp centering

KoLeo regularizer

Simple Model & Data Scaling

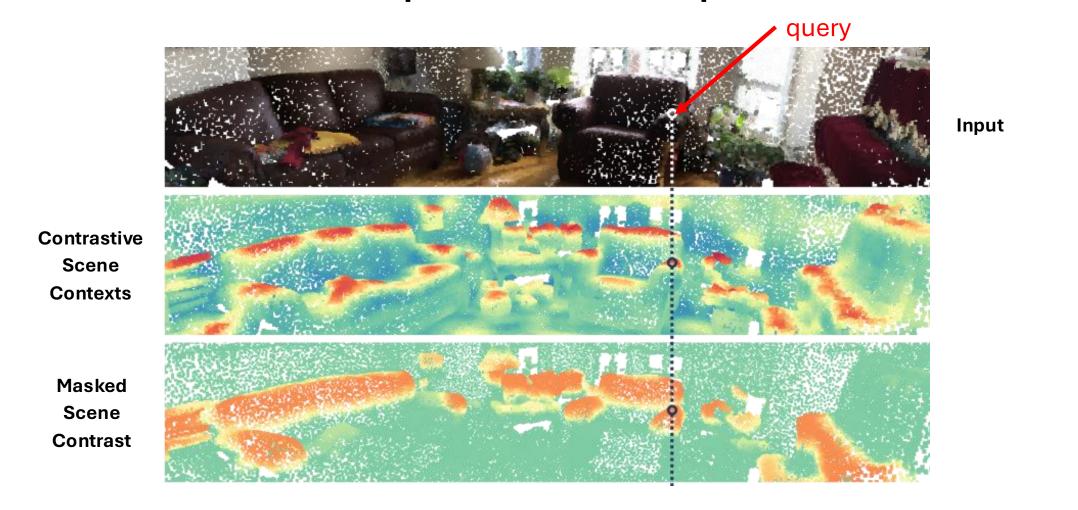
But there is one key difference to 2D—the "Geometric Shortcut"

But there is one key difference to 2D—the "Geometric Shortcut"



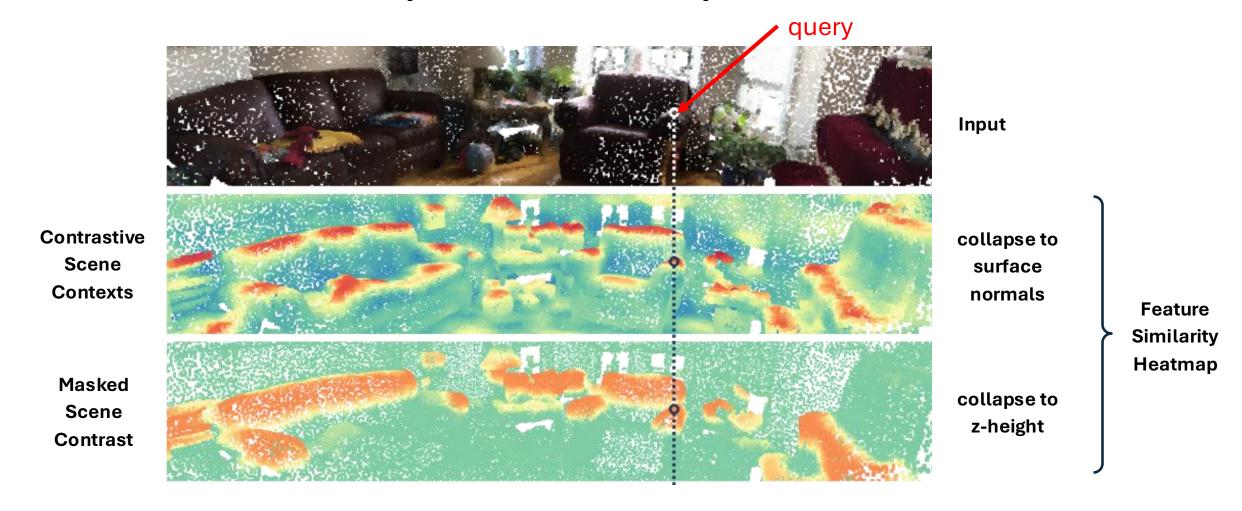
All images are organized in the same way. Point clouds are not.

Geometric Shortcut Collapses Learned 3D Representations

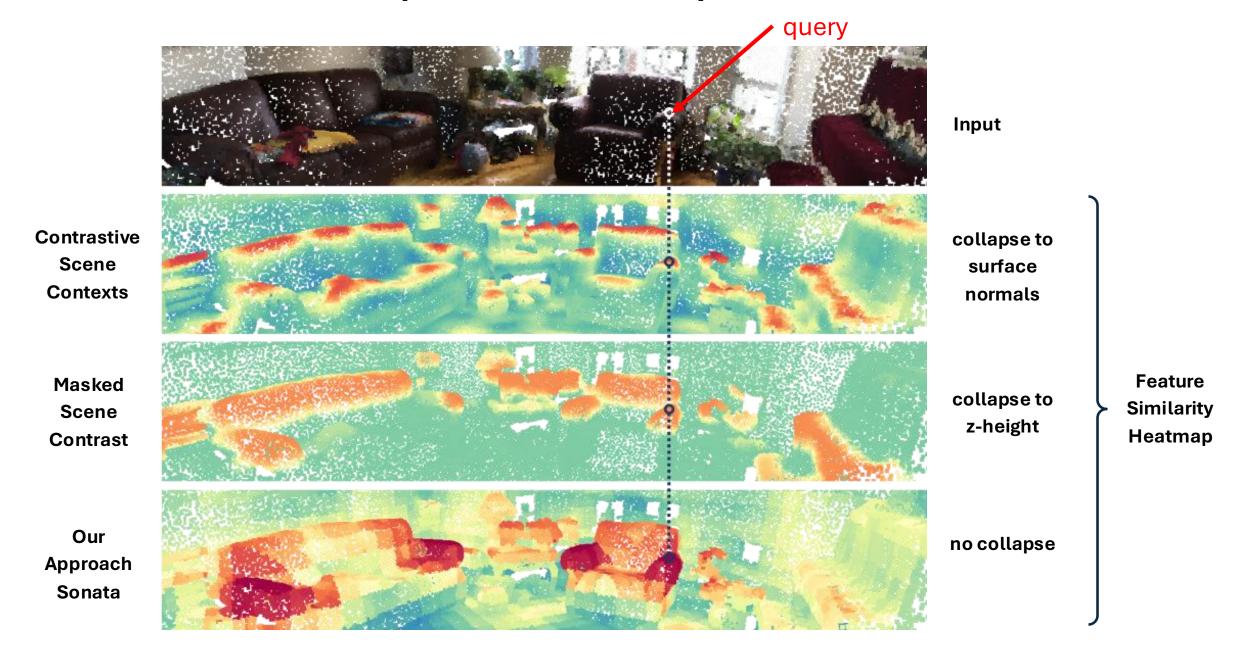


Feature Similarity Heatmap

Geometric Shortcut Collapses Learned 3D Representations

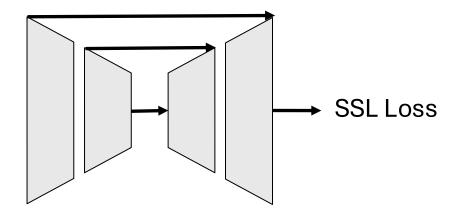


Geometric Shortcut Collapses Learned 3D Representations



Two Key Strategies to Break the Shortcut:

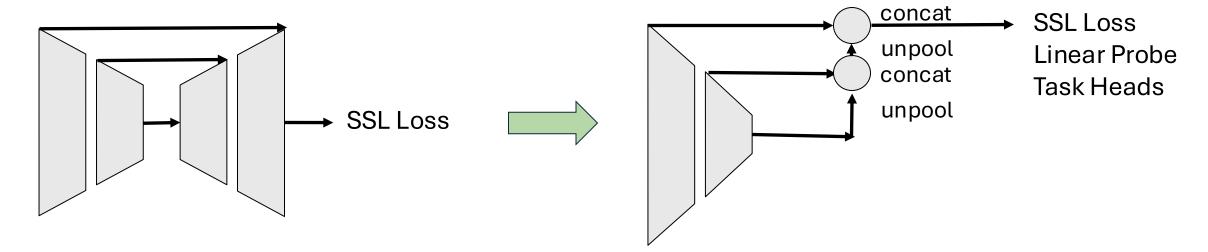
Decoder Free Design: Replacing Decoder with Learning-Free Upcasting



Standard Encoder-Decoder

Two Key Strategies to Break the Shortcut:

Decoder Free Design: Replacing Decoder with Learning-Free Upcasting



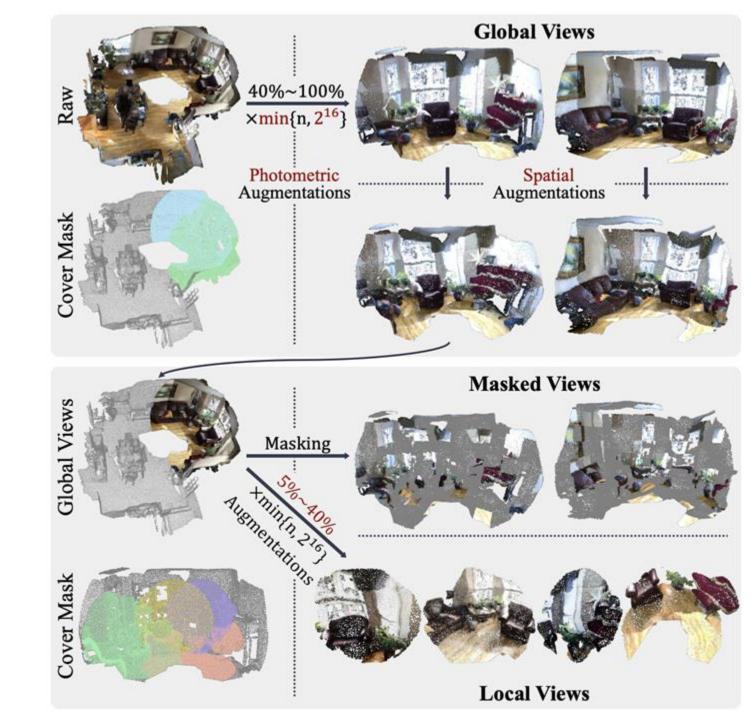
Standard Encoder-Decoder

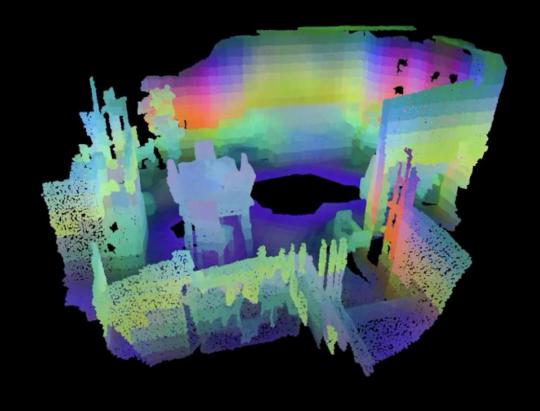
Upcasting of Output Features

- no "wasted" parameters in decoder
- better gradient flow

Two Key Strategies to Break the Shortcut:

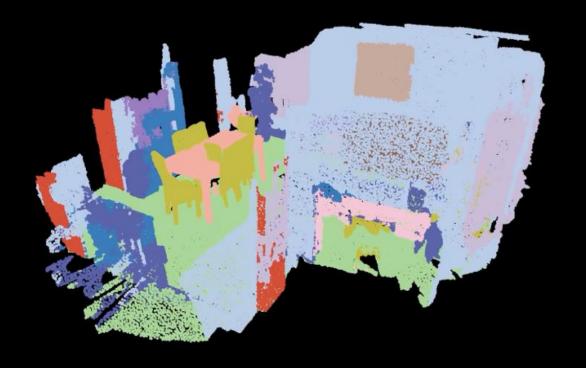
Self-distillation with strong spatial obscuration that gradually increases throughout training.





Input Pointcloud

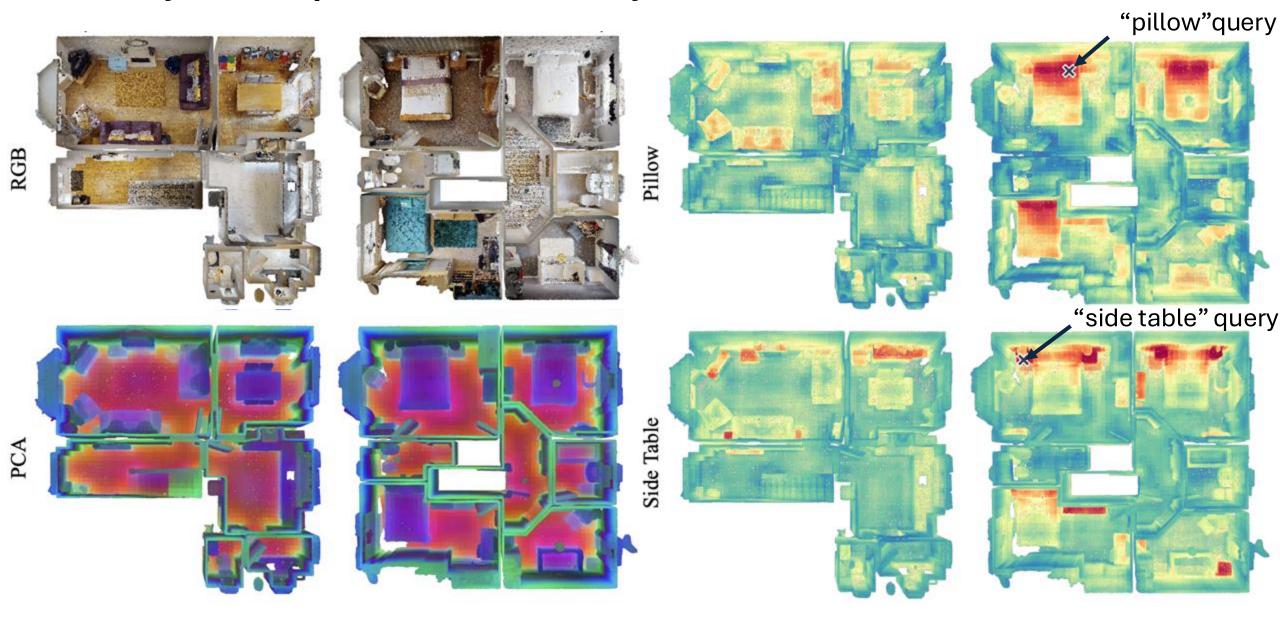
Sonata: Features (PCA)



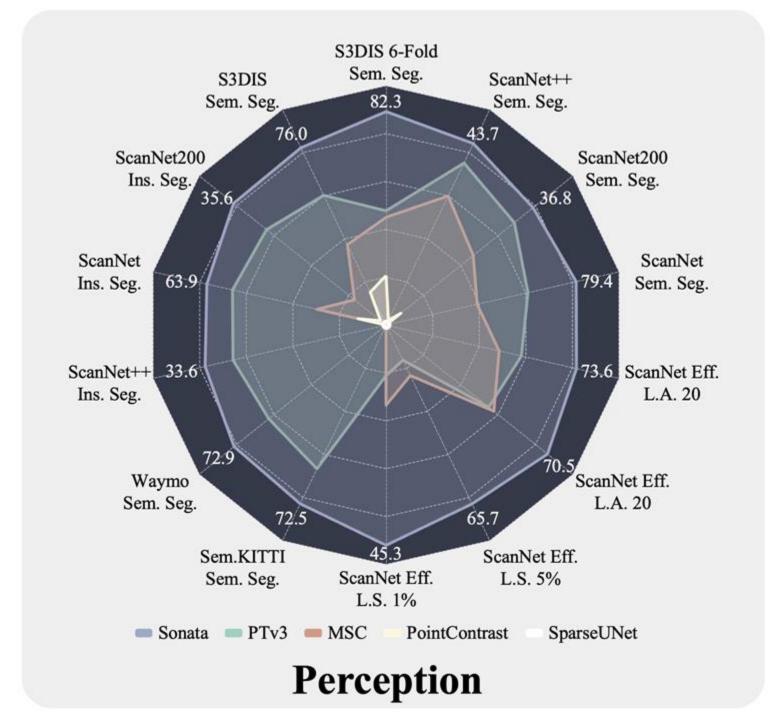
Input Pointcloud

Sonata: Segmentation (Linear Probe)

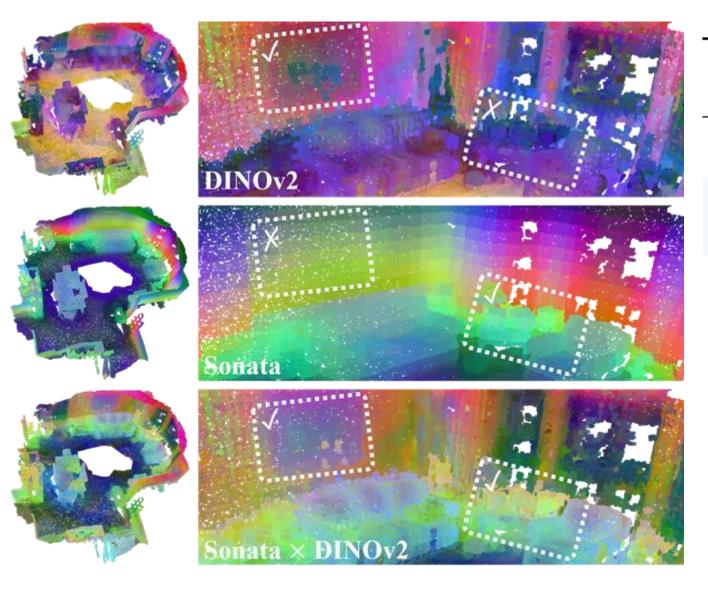
Similarity Heatmaps for Different Query Locations



Results - Sonata is SOTA



Results - concat(Sonata, DINOv2.5) > Sonata > DINOv2.5



$2D \times 3D$	ScanNet Val [23]			ScanNet200 Val [23]		
Methods	mIoU	mAcc	allAcc	mIoU	mAcc	allAcc
• DINOv2 (lin.) [60]	63.09	75.50	82.42	27.42	37.59	72.80
• DINOv2.5 (lin.) [24]	63.36	75.94	82.30	27.75	39.23	72.53
Sonata (lin.)	72.52	83.11	89.74	29.25	41.61	81.15
+DINOv2 (lin.)	75.91	85.36	91.25	36.67	46.98	82.85
+DINOv2.5 (lin.)	76.44	85.68	91.33	36.96	48.23	82.77

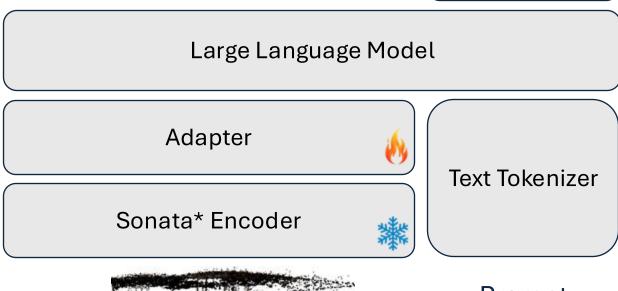
Scene Understanding by Injecting Spatial Information into LLM via Sonata

Answer

Decoder

Encoder	F1 - object			
Elicodei	$IoU_{3D}@0.25$	$IoU_{3D}@0.5$		
Voxelize (P+DINOv2)	0.1	0.0		
Rand. sampling (P+DINOv2)	0.2	0.0		
3DCNN enc. (P)	59.8	46.1		
3DCNN enc. (P+DINOv2)	57.1	45.0		
3DCNN enc. (P) + Voxelize (DINOv2)	62.9	46.7		
Sonata/PTv3 enc. (P)	65.1	49.4		

Mao, Yongsen, "SpatialLM: Training Large Language Models for Structured Indoor Modeling", Arxiv 2025



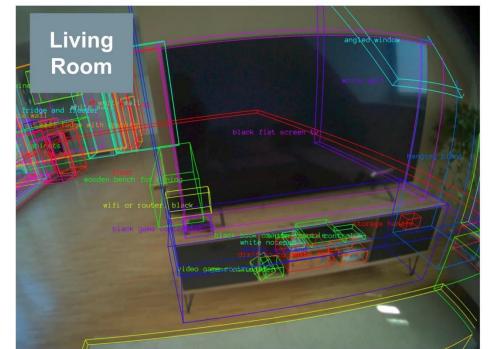
Prompt

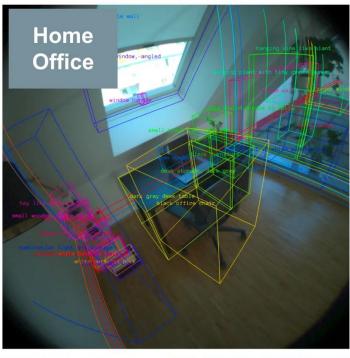
* it will still help to finetune Sonata on your data

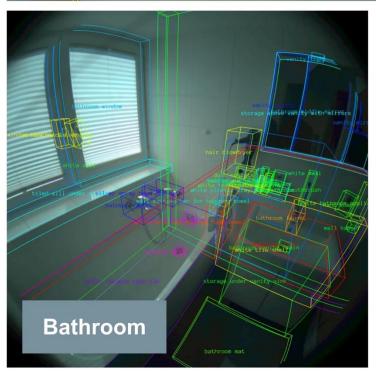
Egocentric Open-World Scene Understanding

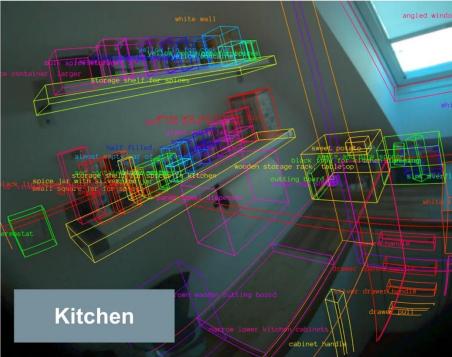
- Closed taxonomy 3D object detection (EFM3D, Arxiv 2024).
- Lifting 2D open-world foundation models to 3D.
 - 2D Segmentation "Point Painting" on Sparse Point Cloud.
 - 2D Segmentation lifting via Gaussian Splats (EgoLifter, ECCV 2024).
 - 2D to 3D Bounding Box Lifting. (Sneak Peak).
- Self-supervised 3D foundation models (Sonata CVPR 2025).

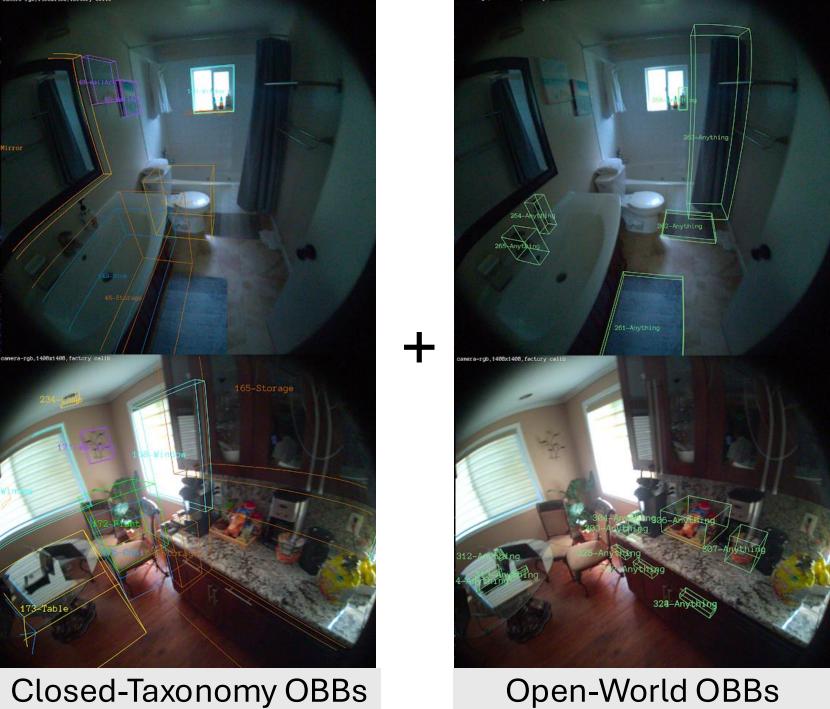
Benchmarking Open-World 3D Object Detection

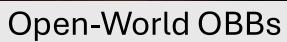


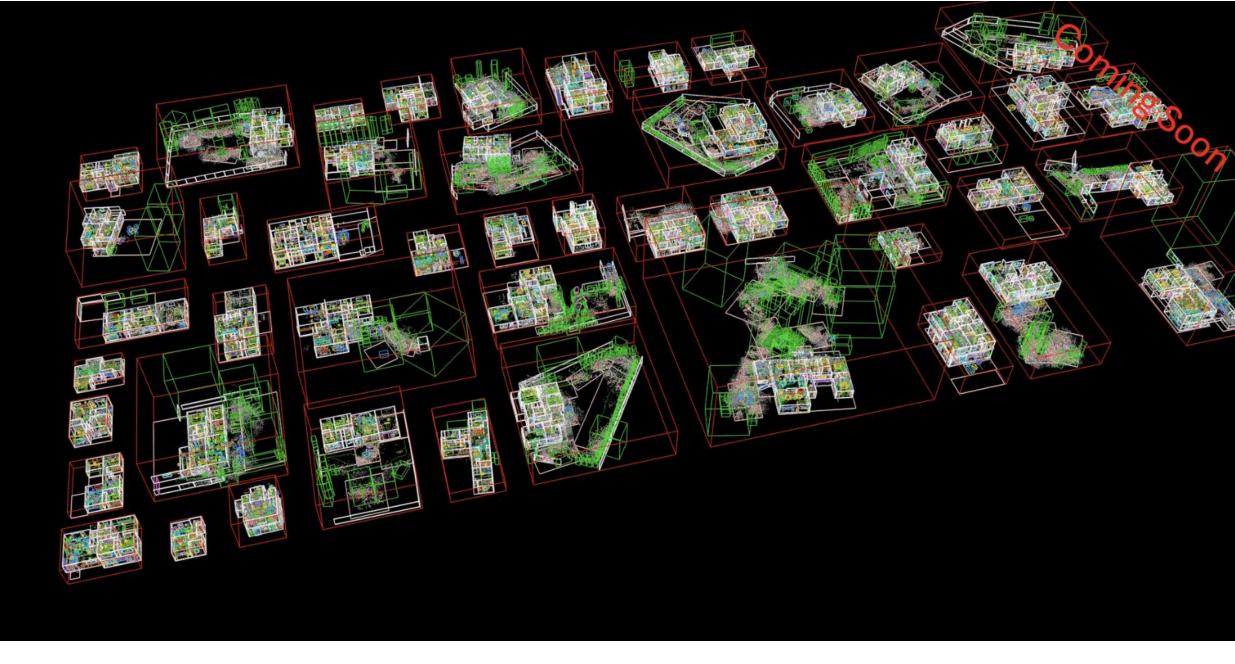










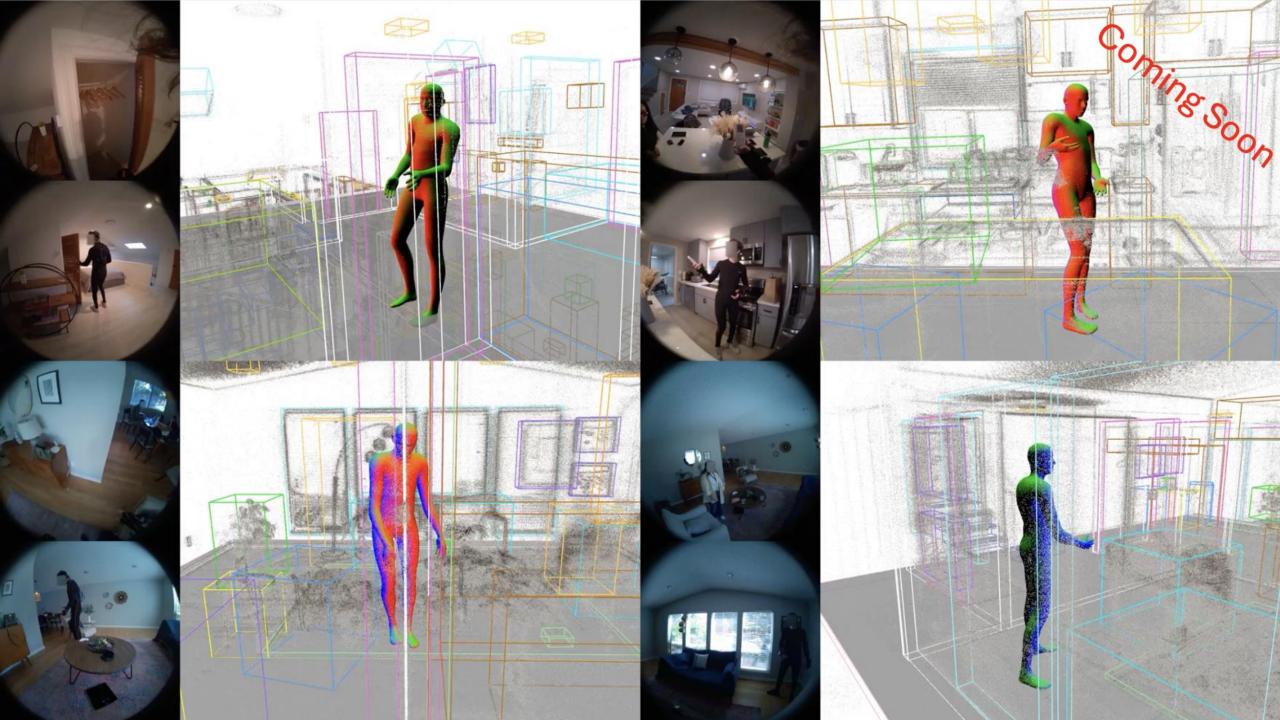


Nymeria++: Human Motion & 11k Closed Taxonomy + 10k Open-World Objects

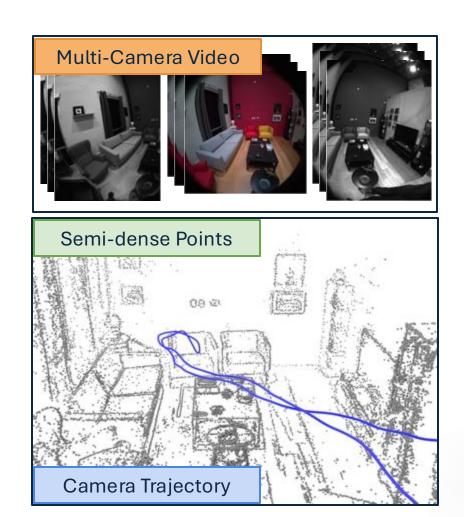
Nymeria++

Closed and Open-World OBBs for Egocentric Human Motion Dataset

Coming Soon



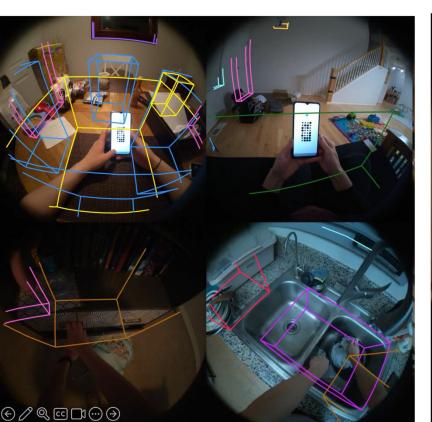
Conclusion: Egocentric Data is a New Category of Data

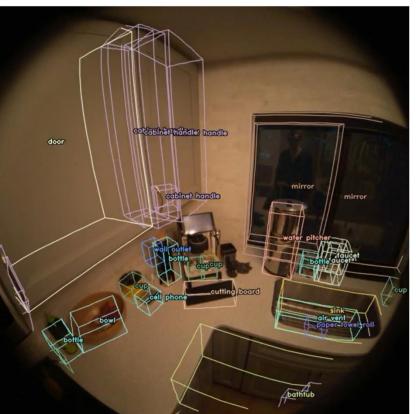


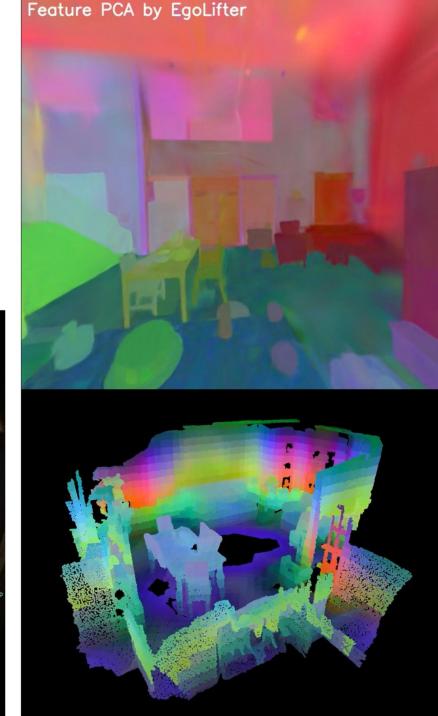
Egocentric Data

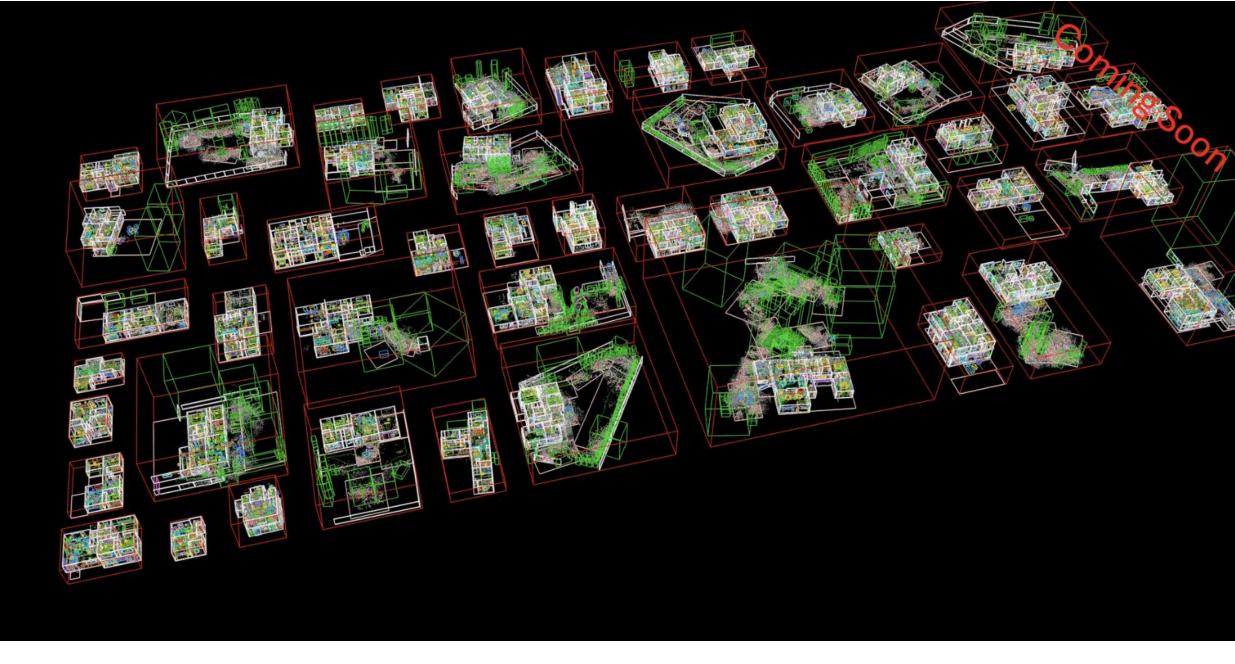
Project Aria Gen 2 Device

- Robust Closed-Taxonomy Object Detection on Egocentric data. (EFM3D, Arxiv)
- 2D Foundation Model lifting using sparse points or Gaussian Splats. (EgoLifter 2024).
- 3D self supervised foundation model Sonata (CVPR 2025)

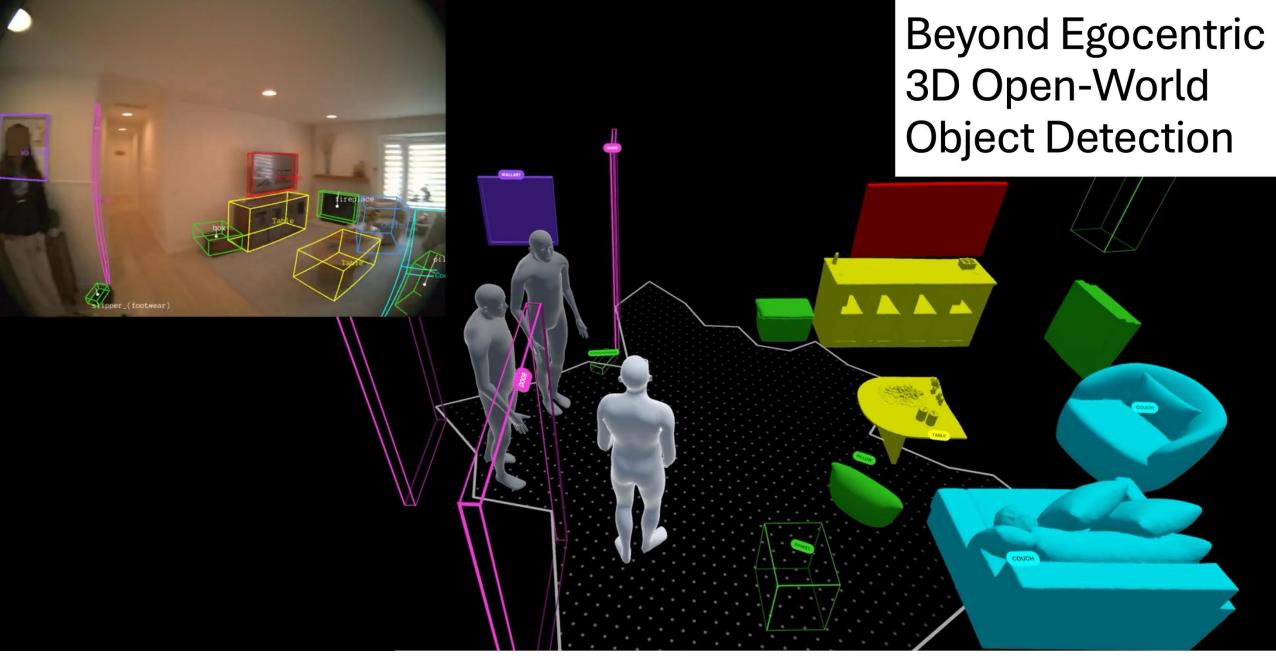




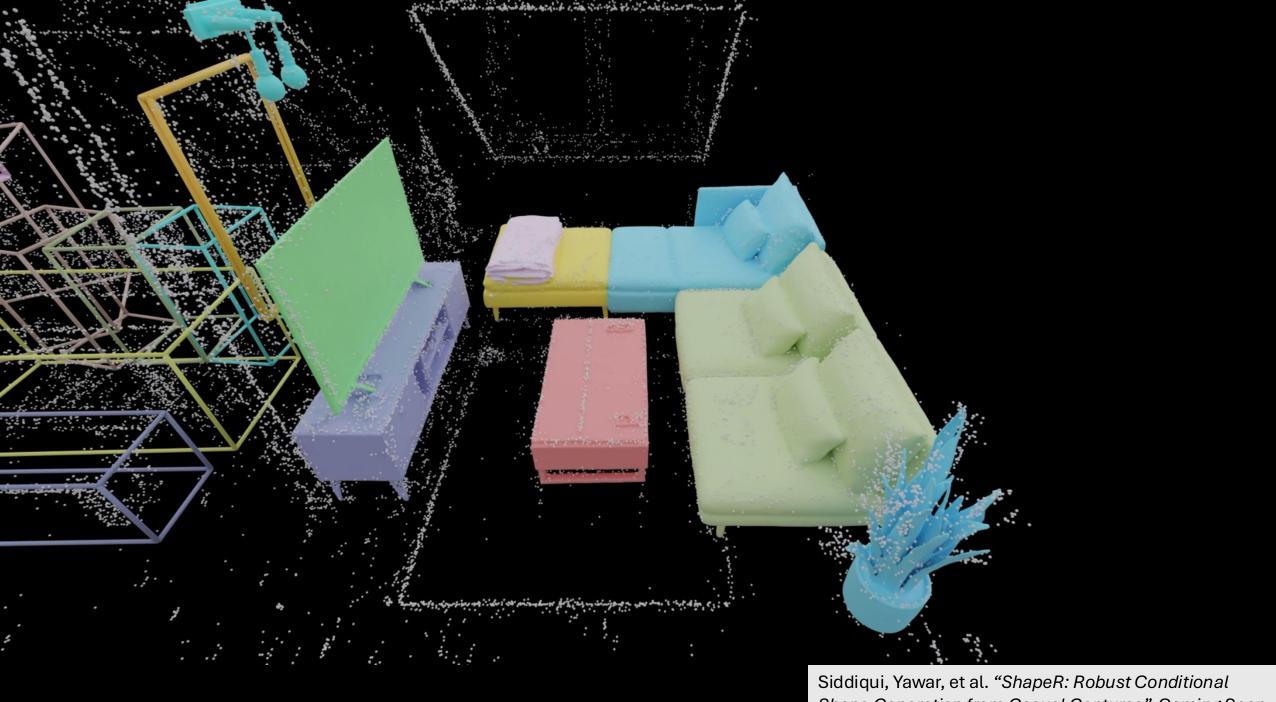




Nymeria++: Human Motion & 11k Closed Taxonomy + 10k Open-World Objects



4th Hands on Egocentric Research Tutorial with Project Aria (8am-12pm on Monday) EgoMotion Workshop (1pm-5pm on Monday)



Shape Generation from Casual Captures", Coming Soon

Questions?

