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1 Introduction

This is a collection of facts and formulas for rigid body transformations. The aim is to
establish a reference for practitioners, beginners, and professionals.

This is work in progress. Please bring any errors or suggestions to my attention via email
at jstraub@csail.mit.edu.
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2 Notation

R € R3*3 rotation matrix
q € R* quaternion vector
t e R3 translation vector
T € R¥ transformation matrix
peR? point in 3D
0 € [—m,m angle of rotation
w e S? axis of rotation
a € [0, ] angle between two rotations

e B.,: transformation BT}, rotation PR,, translation Pt4 from reference frame A to
reference frame B

e p4: coordinates of point p in coordinate frame A

. construct skew symmetric matrix from vector

e skew operator [].:

0 —Ws; Wa
W=lw], = ws 0 —w | =wiG1+ waGs + w3Gh (1)
—wWy Wi 0
00 O 0 01 0 -1 0
=w [0 0 =1 4w | 0O 0 O0)4+w3z|{1l 0 O (2)
01 0 -1 0 0 0 0 O

e vee operator V: inverse of skew operator — extract vector from skew symmetric matrix

—Was
WY —w=| Wy | eRr®. (3)
—Wis

e homogeneous coordinates: sometimes notation becomes easier by working in homoge-
neous coordinates. This involves increasing the dimension of a vector by 1

= (%) ()

3 Rotation

Rotation is a fundamental part of a rigid body transformation. It can be described in
different ways: rotation matrices, quaternions, and axis and angle.

In the following I will introduce these different representations and highlight their con-
nections.
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3.1 Rotation matrices SO(3)

R € R (5)
det(R) =1 (6)
RTR =1 (7)
R'=R" inverse (8)
“Ri=C°RpPR, composition (9)
Lo 0 .
R=U (0 10 ) VI, R=USV" rectification (10)
0 0 det(UVT)
ps = "Rapa rotation (11)
a = arccos 3 (trace(R"R') — 1) distance (12)
3.1.1 Lie group and Lie algebra structure
e Exponential map Exp : so(3) — SO(3 )
Exp(W) :1+ O 4 L= Oy | g = [Jwl|y (13)
Exp(¢) = ([ I) (14)
e Logarithm map Log : SO(3) — so(3):
Log(R) = 2sm (R R") , 6 = arccos & (trace(R) — 1) (15)
£= Log( )’ (16)
e Generators of so(3):
00 O 0 01 0 -1 0
G,=(00 —-1),G,=10 00],G.=|1 0 0 (17)
01 0 -1 0 0 0 0 O
[f]x = Gy + Gyéy + G.&. (18>

The exp and log map can be understood as mapping between the rotation manifold and
its tangent space around the identity rotation. If we want to map a rotation into a different
tangent space around R, we simply compute:

Expp, (W) = RsExp(W ) (19)
Logp, (R) = RaLog(R4R) (20)
0 = arccos 3 (trace(R} R) — 1) (21)

3.1.2 Conversions from other representations

G+ G —a¢—4¢ 260ty —wt:) 209 + qwiy)

R=| 2(qgy+qut:) do—C+0¢—¢  2(qyq — quiz) | [Hor87] (22)
Q(qu,z - Qwa) 2(Qsz + qugn) qz; - qz - q; + q,z

R = Exp(fw]y) (23)

(24)
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3.1.3 Derivatives

B OFp =l (25)
S RED(E =, (26)
= %Exp@)Rp = HOG, G, (27)
aix %RExp@p = MGG GG (28)

where ¢ = fw.

3.2 Quaternions

Quaternions are 4D extensions of the imaginary numbers ¢ = ¢, + ¢, + jg, + kg.. The unit
length quaternions can be used to describe 3D rotations. For our purposes we think of unit
quaternions ¢ = (Gu, ¢zy-) as points lying on the sphere in 4D, S*. S? is a double cover of the
rotation space. Hence it is sufficient to only consider the upper half sphere in 4D to cover
the space of rotations completely.

q € R (29)
lqllz =1 (30)
¢ = (Gu> —Guyz) inverse  (31)

TwQw — Taeqe — TyqQy — 7242
Tw(x + TeGuw + Tsz - ery
Twa —Tzq, + rwa + 24z
Twd + Tely — Tydx + T2qw

C

ga=%qpolqa=roq= composition [Hor87]  (32)

pe =2qa0pa rotation  (33)
qgop=(—q)op (34)
q= ﬁ rectification  (35)
a = 2arctan % L Ag=q loq distance  (36)

3.2.1 Conversions from other representations
q = (cos ,sin Sw) (37)

3.3 Axis Angle (AA)

Axis w and angle 0
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0 € [—m, ] (38)
lwll2 =1 (39)
[fw],, € so(3) (40)

Axis angle rotations can neither be composed directly nor can they directly transform
3D points.

3.3.1 Conversions from other representations

0 = 2 arccos ¢, (41)
0 = 2 arctan H‘I’;%”Z (numerically more stable) (42)
_ dryz
W= llgzy- |2 <43)
fw = Log(R)" (44)
0 = arccos 3 (trace(R) — 1) (45)

4 Rigid body transformations SE(3)

Rigid body transformation is a composition if a rotation and a translation.

T = (? i) (46)

T _pT
T ! = o R inverse (47)
0 1
Cp. B Cp B c
Ty =CTPTy = ( RBO Ra "Ry t‘f + tB) composition (48)
pa="Tppp transformation (49)

The homogeneous coordinate representation above has a nice clean notation but in prac-
tical implementations one usually does not want to spend memory on storing the constant
Os and the 1 in the fourth row of T'.

T ={R,t} (50)

T-'={R", —R"t} inverse (51)

Ty = °TpPTy = {“RP R4, “RpPts + “tp} composition (52)

pa=“Rppp + 5 transformation (53)
Alternatively we can use a unit Quaternion to represent the rotation.

T = {q,t} (54)

T '={q¢' (¢ ot)} inverse (55)

Ty =T8T, = {CqB oBqu,%qpoBts+ CtB} composition (56)

pa="qpops + g transformation (57)
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