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Abstract

In this writeup, I give an introduction to the von-Mises-Fisher (vMF) distribution which is a commonly used isotropic
distribution for directional data. The writeup is an excerpt of my PhD thesis [10] with a focus on Bayesian inference and
computational considerations when working with the vMF distribution. While the initial discussion is general, some of the
results and derivations for efficient inference are specialized to 3D directional data. Specifically, after the introduction of
the vMF distribution and two different conjugate prior distributions, I outline general sampling from the posterior vMF
distribution before deriving the normalization of the prior and the marginal data distribution for 3D. The last two sections
show the cumulative density function and the entropy for the 3D vMF distribution.

The von-Mises-Fisher (vMF) distribution is commonly used to describe directional data [2, 3, 6, 11] and can be regarded
as akin to the isotropic Gaussian distribution of the sphere in D dimensions, SD−1. It is parametrized by a mean direction
µ ∈ SD−1 and a concentration τ > 0 (see Fig. 1). Its density is defined as [4]

vMF(n;µ, τ) = Z(τ) exp(τµTn) , Z(τ) = (2π)
−D/2 τD/2−1

ID/2−1(τ)
, (1)

where Iν is the modified Bessel function [1] of the first kind of order ν. Figure 1 and 2 illustrates the vMF distribution
in 2D and 3D respectively for different concentration parameters. In D = 3 dimensions, with τ1/2

I1/2(τ)
=
√

π
2

τ
sinh(τ) and

sinh τ = exp τ−exp(−τ)
2 , the normalizer of the vMF distribution simplifies to

Z(τ) =
τ

4π sinh(τ)
=

τ

2π(exp τ − exp(−τ))
. (2)

A numerically more stable way of writing the vMF distribution in 3D is

vMF(n;µ, τ) =
τ exp

(
τ
(
µTn− 1

))
2π (1− exp(−2τ))

. (3)

(a) τ = 1 (b) τ = 10 (c) τ = 100 (d) τ →∞

Figure 1: Depiction of 2D von-Mises-Fisher distributions with increasing concentration τ . As τ →∞ the von-Mises-Fisher
distribution approaches a delta function on the sphere at its mode µ.
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(a) τ = 1 (b) τ = 10 (c) τ = 100

Figure 2: The von-Mises-Fisher distributions on the unit sphere in 3D, S2, with mean at the north pole and concentrations
τ . The color encodes the probability density function value of the vMF over the whole sphere. From the coloring it can be
observed that the von-Mises-Fisher distribution is isotropic.

1. Sampling
An efficient approach for sampling from a vMF distribution was describe by Ulrich [12]. While the approach works for

any dimension we describe it for D = 3 dimensions for clarity reasons. To sample a random vector from a vMF distribution
with mode m = (0, 0, 1) first sample the two variables u and v:

v ∼ Unif(SD−2) (4)

u ∼ p(u; τ) = τ

2 sinh τ
exp(τu) (5)

and then compute the vMF distributed sample n as

n =
(√

1− u2v u
)
. (6)

In practice we obtain v by sampling from a zero-mean isotropic Gaussian with unit variance and normalizing the resulting
sample to unit length. The inversion method is used to sample u (see general treatment in Sec. 2.1.2 of [9]): With the
cumulative density of u, F (u), derived from p(u; τ)

ξ ∼ Unif(0, 1) (7)

u = F−1(ξ) = 1 + τ−1 log (ξ + (1− ξ) exp(−2τ)) . (8)

Finally, we rotate the sampled vector n from m to µ via the rotation µRm which can be computed from axis w = m× µ and
angle θ = arccos(µTm). With ω = θw:

µRm = Exp([ω]×) = I + sin(θ)
θ [ω]× + 1−cos(θ)

θ2 [ω]×
2 (9)

[ω]× =
[ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

]
. (10)

This makes the overall sampling of a vMF distributed data point very efficient for D = 3 dimensions and the computational
complexity independent of the concentration τ (which rejection sampling is not for example).

2. Conjugate Prior of µ given τ

For Bayesian inference it is convenient to have conjugate priors for the parameters of a distribution because posterior
distributions remain in the same class as the prior distribution. For the vMF distribution mean parameter µ the conjugate
prior, given a fixed τ , is a vMF distribution vMF(µ;µ0, τ0) [8]. Note that setting τ0 to 0 amounts to assuming an uniform
prior distribution for the mean µ. The corresponding posterior given directional data n = {ni}Ni=1 is

p(µ | n; τ, µ0, τ0) ∝ vMF(µ;µ0, τ0)

N∏
i=1

vMF(ni;µ, τ)

= Z(τ0)Z(τ)
N exp

(
µT

(
τ0µ0 + τ

N∑
i=1

ni

))
.

(11)
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The last expression has the form of a vMF distribution in µ and thus:

p(µ | n; τ, µ0, τ0) = vMF
(
µ; ϑN

‖ϑN‖2 , ‖ϑN‖2
)
, (12)

where ϑN = τ0µ0 + τ
∑N
i=1 ni. Under the conjugate prior for µ we can compute the marginalization in closed form as:

p(n; τ, µ0, τ0) =

∫
SD−1

vMF(n;µ, τ) vMF(µ;µ0, τ0) dµ

= Z(τ)Z(τ0)

∫
SD−1

exp
(
µT (τn+ τ0µ0)

)
dµ

= Z(τ)Z(τ0)

∫
SD−1

exp
(
‖ϑ1‖2µT ϑ1

‖ϑ1‖2

)
dµ

=
Z(τ)Z(τ0)

Z(‖ϑ1‖2)
=

Z(τ)Z(τ0)

Z(‖τn+ τ0µ0‖2)
,

(13)

where ϑ1 = τn+ τ0µ0 as introduced in Eq. (12).

3. Joint Conjugate Prior for µ and τ

There also exists a conjugate prior distribution for the mean µ and the concentration parameter τ which unfortunately is
only known up to proportionality [8]:

p(µ, τ | µ0, a, b) ∝
(

τD/2−1

ID/2−1(τ)

)a
exp

(
bτµTµ0

)
, (14)

where 0 < b < a. The normalizing constant can only be computed analytically in special cases. Knowing this prior only up
to proportionality still allows sampling from it for sampling-based inference. The posterior given observed data {ni}Ni=1 is

p(µ, τ | {ni}Ni=1, µ0, a, b) ∝
N∏
i=1

Z(τ) exp(nTi µτ)

(
τD/2−1

ID/2−1(τ)

)a
exp

(
bτµTµ0

)
(15)

∝
(

τD/2−1

ID/2−1(τ)

)a+N
exp

(
τµT

(
N∑
i=1

ni + bµ0

))
(16)

=

(
τD/2−1

ID/2−1(τ)

)aN
exp

(
τbNµ

TµN
)
, (17)

where the posterior parameters are

aN = a+N , bN = ‖ϑ‖2 , µN = dϑe , ϑ =

N∑
i=1

ni + bµ0 . (18)

Observe that 0 < bN < aN because of 0 < b < a. This shows that a acts similar to the pseudo counts ν and κ of for example
the normal inverse Wishart distribution [5].

3.1. Sampling from the Joint Prior

One way to sample from this prior distribution is using Gibbs sampling:

µ ∼ p(µ|τ ;µ0, a, b) ∝ vMF(µ;µ0, bτ) (19)
τ ∼ p(τ |µ;µ0, a, b) . (20)

Sampling µ amounts to sampling from a vMF distribution as described earlier in this section, while sampling from the
conditional distribution of τ needs special care. Inversion sampling is not applicable since the cumulative density could not be
inverted. Instead, we choose to use a slice sampler [7], an efficient sampling strategy for low-dimensional distributions. Since
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Algorithm 1 Slice sampler for the prior distribution on the von-Mises-Fisher concentration τ .

Require: f(τ) ∝ p(τ |µ;µ0, a, b) and τ0
1: Find maximum τ? of f(τ)
2: Initialize τ = τ0
3: while more samples desired do
4: Sample u ∼ Unif(0, f(τ))
5: if τ? > 0 then
6: Find left slice border τL of f(τ) using Newton starting from 10−3τ?

7: Find right slice border τR of f(τ) using Newton starting from 1.5τ?

8: else
9: τL = 0

10: Find right slice border τR of f(τ) using Newton starting from 0.5
11: end if
12: Sample τ ∼ Unif(τL, τR)
13: end while

Figure 3: The conjugate prior for the parameters of a von-Mises-Fisher distribution is depicted for different values of b and
dot-product µTµ0. From left to right dot products of 1 (µ and µ0 are equal), 0 (µ and µ0 are orthogonal), and −1 (µ and µ0

pointing in opposite directions) are shown. Hyper-parameters b are sampled in the allowed interval from 0 to 1.

the distribution is unimodal (see Fig. 3 and Appendix A.1 for a full characterization), a slice sampler can be implemented
more efficiently than standard more universal algorithms explored in [7]. In the following we use f(τ) ∝ p(τ |µ;µ0, a, b).

The slice sampler outlined in Alg. 1 alternates between sampling u uniformly from 0 to f(τ) and sampling τ uniformly
from the set T = {τ : f(τ) ≥ u}. As discussed in depth in Appendix A.1, there are two cases for the set T : either the
maximum is attained at τ? = 0 and the function decreases for τ > 0 or the maximum is attained for some τ? > 0 and the
function increases for τ < τ? and decreases for τ > τ?. In the first case T is the set from 0 to f(τ) = u, which can be found
efficiently using Newton’s method starting from some arbitrary small τ0R = 0.5. In the second case T is set from τL to τR,
where τL and τR are the locations of f(τ) = u left and right of the maximum. The two intersection points can be found by
running Newton’s algorithm from sufficiently far left/right of the maximum τ?. In practice we start Newton’s method from
τ0L = 10−3τ? to obtain the left intersection point and from τ0R = 1.5τ? to obtain the right intersection point. Starting closer
to τ? leads to numerical problems. Newton’s method generally converges in less than 10 iterations.

3.2. Normalization of the Joint Prior for a = 1 and D = 3

While we can directly sample from the joint prior using the aforementioned method, we do need a parametric normalized
form for the evaluation of the marginal data distribution p(xi;µ0, a, b) for e.g. Bayesian nonparametric inference. The
problem with finding a normalizer for the prior is largely due to the exponentiation with a. Setting a = 1 and working in
D = 3 dimensions, we can derive a closed form normalizer as shown in Appendix A.2. Setting a = 1 amounts to assuming a
weak prior since a can be thought of as pseudo counts as discussed in relation to the posterior parameter updates in Eq. (18).
Using a weak prior is a common practice if there are is no strong prior information about the distribution of the parameters.
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Figure 4: The marginal distribution of a von-Mises-Fisher distributed data point under the conjugate prior for b1 = ‖xi +
bµ0‖2. Since a given value b restricts the range of b1 = ‖xi + bµ0‖2 the plots all have a different support.

With this the properly normalized prior for µ and τ is

p(µ, τ | µ0, 1, b) =
bτ

2π2

exp
(
bτµTµ0

)
tan

(
bπ
2

)
sinh(τ)

. (21)

Slices of the prior density are plotted for aligned µ and µ0 (µTµ0 = 1), orthogonal µ and µ0 (µTµ0 = 0), and flipped µ and
µ0 (µTµ0 = −1) and different b between 0 and 1 in Fig. 3. They show that the prior encourages a low concentration for
unaligned µ and µ0. Only once µ and µ0 become aligned, the prior encourages higher concentrations. The magnitude of the
most likely concentration then increases with b as can be seen from the left-most plot in Fig. 3.

3.3. Marginal Data Distribution

For D = 3 dimensions and a = 1 we can derive a closed form normalized probability density function for the marginal
distribution of the data under the prior:

p(xi;µ0, 1, b) =

∫ ∞
0

∫
S2

vMF(xi;µ, τ)p(µ, τ ;µ0, 1, b) dµdτ (22)

=
b

23 tan
(
bπ
2

) 1− sinc(b1π)
sin2( b1π2 )

, (23)

where 0 < b1 = ‖xi + bµ0‖2 < 2. For the full derivation refer to Appendix A.3. This marginal distribution is displayed as a
function of b1 for several b values in Fig. 4. Since a given value b restricts the range of b1 = ‖xi + bµ0‖2 the plots all have a
different support. For b = 0 the prior is uniform over the sphere, b1 = 1 for all xi and we therefore expect p(xi;µ0, 1, 0) to
be equal to one over the area of the sphere S2 which is indeed the case.

4. Cumulative Density Function in 3D
The cumulative density function (cdf) of the radially symmetric vMF distribution is the probability that the angle between

the mode µ and a data point n is smaller than α. Working in spherical coordinates and arbitrarily fixing µ = (0, 0, 1) the cdf
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Figure 5: The left plot shows the cumulative density P of the vMF distribution as a function of the concentration τ depending
on desired percentile P . On the right, the blue line of P = 99% indicates that a concentration of at least 300 leads to 99% of
the probability mass to be concentrated within a solid angle of α = 10◦ around the mode. This is akin to the 3σ rule of the
Gaussian distribution.

is:

P
[
arccos(µTn) < α

]
=

∫ 2π

0

∫ α

0

Z(τ) exp(τ cosφ) sinφdφ dθ

= 2π

∫ α

0

Z(τ) exp(τ cosφ) sinφ dφ

=
2πZ(τ)

τ
(exp τ − exp (τ cosα))

=
exp τ − exp (τ cosα)

exp τ − exp(−τ)

=
1− exp (τ(cosα− 1))

1− exp(−2τ)
.

(24)

The cdf is shown in Fig. 5 to the left for different concentrations τ . The plot to the right shows the solid angle α as a
function of concentration and probability P . The blue line for P = 99% shows the equivalent to the 3σ rule for the Gaussian
distribution: for a concentration τ = 100 99% of the probability mass is within a solid angle of approximately α = 18◦. To
get to a probability mass of 99% inside a solid angle of 10◦ a concentration of τ = 300 is needed. Such intuitions are useful
when judging an inferred τ or choosing a fixed concentration.

5. Maximum Likelihood Estimate Parameters µ and τ in 3D
For ML estimation of the von-Mises-Fisher parameters it will be convenient to work in log scale. The log likelihood of a

set of data {xi}Ni=1 is:

log p({ni} | µ, τ) =
∑
i

log vMF(ni | µ, τ) (25)

= τµT
∑
i

ni +N log τ −N log (2π(exp τ − exp(−τ))) . (26)

The ML estimate for µ can directly be read of: independent of the concentration τ the maximum with respect to the mode µ
is attained if µ ∈ S2 is directionally aligned with the sum over data vectors:

µ? =
⌈∑N

i=1 ni

⌉
. (27)
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Figure 6: Entropy of the vMF distribution on S2 as a function of the concentration τ . The plot to the left is zoomed in to the
range of τ ∈ [0, 10] whereas the plot to the right shows a larger range τ ∈ [0, 100].

To derive the maximum likelihood estimator for the concentration τ we set the derivative to 0:

∂

∂τ
log p({ni} | µ, τ) = 0 (28)

1
N µ

T ∑
i ni +

1
τ −

1+exp(−2τ))
1−exp(−2τ) = 0 . (29)

Since no closed form solution can be found we resort to Newton’s method to efficiently obtain the ML estimate for the
concentration τ . The thus obtained Extremum is indeed a maximum since the second derivative of the log likelihood is
always negative:

∂2

∂τ2
log p({ni} | µ, τ) = − 1

τ2 + 4 exp(2τ))
(exp(2τ)−1)2 < 0 . (30)

6. Entropy in 3D
The entropy of a von-Mises-Fisher distribution in 3D is computed as:

H = −
∫
x∈S2

vMF(x;µ, τ) log vMF(x;µ, τ) dx (31)

= −
∫
x∈S2

vMF(x;µ, τ)(logZ(τ) + xTµτ) dx (32)

= − log(Z(τ))− τZ(τ)
∫
x∈S2

exp(xTµτ)xTµdx (33)

= − log(Z(τ))− τZ(τ)
∫ π

0

∫ 2π

0

exp(τ cosφ) cosφ sinφ dθ dφ (34)

= − log(Z(τ))− 2πτZ(τ)

∫ π

0

exp(τ cosφ) cosφ sinφ dφ (35)

= − log(Z(τ))− 2πτZ(τ)
2τ cosh τ − 2 sinh τ

τ2
(36)

= − log
( τ

4π sinh τ

)
− 2π

τ2

4π sinh τ

2τ cosh τ − 2 sinh τ

τ2
(37)

= − log
( τ

4π sinh τ

)
− 2τ cosh τ − 2 sinh τ

2 sinh τ
(38)

= − log
( τ

4π sinh τ

)
− τ

tanh τ
+ 1 , (39)
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where we have used µ = (0, 0, 1) without loss of generality (the integral and therefore the entropy is invariant to position of
µ). At τ = 0 the vMF distribution is uniform over the sphere. Hence its entropy is equivalent to the entropy of a uniform
distribution over S2 which is log(4π) ≈= 2.53, as can be verified in Fig. 6.

A. Appendix
A.1. Analysis of the Joint Prior for the von-Mises-Fisher Distribution

As introduced in Sec. 3, the joint prior of the vMF distribution is known up to proportionality as

p(µ, τ ;µ0, a, b) ∝ f(τ, µ; a, b, µ0) =
( τ

sinh τ

)a
exp

(
τbµTµ0

)
(40)

We will now characterize this distribution with a focus on the variation in τ to facilitate the implementation and theoretical
justification of a slice sampler to sample from p(µ | τ ;µ0, a, b). Note that all analysis applies for the posterior distribution as
well by using the posterior parameter aN , bN , and µN instead of a, b and µ0. It will be convenient to work in log space:

log f(τ, µ; a, b, µ0) = a log τ − a log sinh τ + τbµTµ0 (41)

= a log τ + a log 2− a log(1− exp(−2τ)) + τ
(
bµTµ0 − a

)
(42)

Keeping in mind that 0 < b < a, the limit of the function as τ → 0 is 0 and as τ →∞ is −∞.
The derivative of log f(τ) is

∂

∂τ
log f(τ) =

a

τ
− 2a exp(−2τ)

1− exp(−2τ)
+ bµTµ0 − a (43)

Unfortunately once cannot solve for the maximum in closed form by setting the derivative to 0 (I have tried). The limits of
this first derivative as τ → 0 is bµTµ0 and as τ →∞ is bµTµ0 − a.

The second derivative of log f(τ) is

∂2

∂τ2
log f(τ) = − a

τ2
− a−4(1− exp(−2τ)) exp(−2τ)− 4 exp(−2τ) exp(−2τ)

(1− exp(−2τ))2
(44)

= − a

τ2
− a−4 exp(−2τ) + 4 exp(−4τ)− 4 exp(−4τ)

(1− exp(−2τ))2
(45)

= − a

τ2
+

4a exp(−2τ)
(1− exp(−2τ))2

(46)

= − a

τ2
+

4a exp(−2τ)
1− 2 exp(−2τ) + exp(−4τ)

(47)

The limit of this second derivative as τ → 0 is −a3 and as τ →∞ is 0. With a > 0 we can show that the second derivative is
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always negative:

− a

τ2
+

4a exp(−2τ)
1− 2 exp(−2τ) + exp(−4τ)

< 0 (48)

4 exp(−2τ)
1− 2 exp(−2τ) + exp(−4τ)

<
1

τ2
(49)

4τ2 exp(−2τ) < 1− 2 exp(−2τ) + exp(−4τ) (50)

(4τ2 + 2) exp(−2τ) < 1 + exp(−4τ) (51)

2τ2 + 1 <
exp(2τ) + exp(−2τ)

2
(52)

2τ2 + 1 < cosh(2τ) (53)

2τ2 + 1 < 1 +
4τ2

2
+

16τ4

24
+ · · · =

∞∑
n=0

(2τ)2n

(2n)!
(54)

2τ2 + 1 < 1 + 2τ2 +
4τ4

6
+ · · · =

∞∑
n=0

(2τ)2n

(2n)!
(55)

0 <
4τ4

6
+ · · · =

∞∑
n=2

(2τ)2n

(2n)!
. (56)

The last statement is true since the infinite series is over strictly positive numbers because of the powers of even numbers
2n. Therefore the second derivative is strictly negative with a limit of 0 for τ → ∞. This means that the first derivative
is monotonically decreasing with a starting point (in the limit for τ → 0) of bµTµ0 and an ending point at bµTµ0 − a for
τ → ∞. That in turn means that the first derivative has exactly one zero crossing (and hence the function one maximum) if
bµTµ0 ≥ 0 and none if bµTµ0 < 0 (the largest function value is at 0). Therefore log f(τ) is monotonically decreasing in the
latter case and has a single maximum in the former.

The location of the maximum τ? cannot be computed in closed form, but we can use the Newton algorithm to obtain its
location less than 10 iterations on average.

The locations of the zero-crossings of g(τ) = log f(τ) − log(u) needed for the slice sampler are then obtained using
Newtons method. Note that g(τ) has the same derivative as log f(τ) derived in Eq. (43). The starting locations are set to
τL0 = 0.001τ? for the left zero-crossing and to τR0 = 1.5τ? for the right zero-crossing. This ensures that Newton’s method
reliably converges to the desired zero crossing within a few iterations.

A.2. Normalizer of the Joint von-Mises-Fisher Prior for D = 3 and a = 1

We can derive a closed form normalizer for a = 1, 0 < b < a = 1 and D = 3 dimensions:

Z(µ0, 1, b)
−1 =

∫ ∞
0

∫
µ∈S2

(2π)
1/2 τ exp(τbµ

Tµ0)

2 sinh τ
dµdτ (57)

=

∫ ∞
0

2−1/2π1/2 τ

sinh τ

∫
S2
exp(τbµTµ0) dµdτ (58)

=

∫ ∞
0

2−1/2π1/2 τ

sinh τ
Z−1(τb) dτ (59)

=

∫ ∞
0

2−1/2π1/2 τ

sinh τ

4π sinh(τb)

τb
dτ (60)

=
(2π)3/2

b

∫ ∞
0

sinh(τb)

sinh τ
dτ (61)

=
21/2π5/2

b
tan

(
bπ

2

)
,∀ − 1 < b < 1 (62)

where we have used that the integral over the vMF exponential term yields the normalizer of the vMF distribution.
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A.3. Marginal Data Distribution of the von-Mises-Fisher Distribution

For D = 3 dimensions and a = 1 we can derive a closed form normalized probability density function for the marginal
distribution of the data under the prior:

p(xi;µ0, 1, b) =

∫ ∞
0

∫
S2

vMF(xi;µ, τ)p(µ, τ ;µ0, 1, b) dµdτ (63)

=

∫ ∞
0

∫
S2

τ

4π sinh(τ)

bτ

2π2

exp
(
τµT (xi + bµ0)

)
tan

(
bπ
2

)
sinh(τ)

dµdτ (64)

=
b

23π3 tan
(
bπ
2

) ∫ ∞
0

τ2

sinh2(τ)

∫
S2
exp

(
τµT (xi + bµ0)

)
dµdτ (65)

=
b

23π3 tan
(
bπ
2

) ∫ ∞
0

τ2

sinh2(τ)
Z−1 (τ‖xi + bµ0‖2) dτ (66)

=
4πb

23π3 tan
(
bπ
2

) ∫ ∞
0

τ2 sinh(τ b̃)

τ b̃ sinh2(τ)
dτ (67)

=
b

2π2b̃ tan
(
bπ
2

) ∫ ∞
0

τ sinh(τ b̃)

sinh2(τ)
dτ (68)

=
b

2π2b̃ tan
(
bπ
2

) π(b̃π − sin(b̃π))

4 sin2( b̃π2 )
, 0 < b̃ < 2 (69)

=
b

23 tan
(
bπ
2

) 1− sinc(b̃π)

sin2( b̃π2 )
(70)

where we have used that the integrating over the vMF exponential term yields the inverse of the normalizer of the vMF
distribution and that 0 < b̃ < 2 because 0 < b < a = 1 which is imposed by the prior distributions properties.
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